二零一四年考研数学三试验大纲原来的作品<【澳门新葡8455最新网站】

2019年数学三考试大纲

考试科目:微积分、线性代数、概率论与数理统计

点击查看:数学二对比解析
数学三对比解析
数学四对比解析

考试科目:微积分、线性代数、概率论与数理统计

考试形式和试卷结构

数学一

一、试卷满分及考试时间

一、试卷满分及考试时间

章节

试卷满分为150分,考试时间为180分钟。

试卷满分为150分,考试时间为180分钟。

2007年大纲内容

答题方式为闭卷、笔试。

二、答题方式

2008年大纲内容

概率论与数理统计 约22%

答题方式为闭卷、笔试。

对比分析

单项选择题选题 8小题,每小题4分,共32分

三、试卷内容结构

高等数学

填空题 6小题,每小题4分,共24分

微积分 约56%

第一章:函数、极限、连续

解答题 9小题,共94分

线性代数 约22%

考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:
澳门新葡8455最新网站 1

函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性
复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数
函数关系的建立

概率论与数理统计 约22%

函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
考试要求:
1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
  5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
  7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

数列极限与函数极限的定义及其性质 函数的左极限和右极限
无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较
极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:

四、试卷题型结构

考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:
澳门新葡8455最新网站 1

函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质

单项选择题选题 8小题,每小题4分,共32分

函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
  5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
  7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

1。理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

填空题 6小题,每小题4分,共24分

对比:无变化

2。了解函数的有界性、单调性、周期性和奇偶性。

解答题(包括证明题) 9小题,共94分

第二章:一元函数微分学

3。理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

微积分

考试内容:导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算
基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数
一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别
函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率半径
考试要求
1.
理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.
6.掌握用洛必达法则求未定式极限的方法.
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.
8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
9.了解曲率和曲率半径的概念,会计算曲率和曲率半径.

4。掌握基本初等函数的性质及其图形,了解初等函数的概念。

一、函数、极限、连续

考试内容:导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算
基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数
一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别
函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率圆
曲率半径
考试要求
1.
理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.
6.掌握用洛必达法则求未定式极限的方法.
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.
8.会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当时,f(x)的图形是凹的;当f“(x)<0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.

5。了解数列极限和函数极限的概念。

考试内容

对比:1:多了一个对曲率圆概念了解
2:强调了图形凹凸的官方说明
分析:1:部分考生只是背诵曲率半径公式,
曲率中心的公式,但由这两个“元素”确定的“曲率圆”本身没有深刻认识。
2:经济学和数学中,对于凹凸的定义确实是相反的。不同作者的定义可能说法不一致时造成混乱。其实凹凸在描述上是有方向的,高等数上是讲向上凹或向上凸的,而我们的知觉就是凸嘛当然是向上罗。
建议:1:对曲率圆的由来,曲率半径,曲率中心要有形象的认识及理论的推导能力,而不是简单背两个公式。
2:
不论来自何种专业背景的学生,按官方定义找一个自己能记住,不会混的方法即可。

6。了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。

函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性
复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数
函数关系的建立

第三章:一元函数积分学

7。理解无穷小量的概念和基本性质,掌握无穷小量的比较方法。了解无穷大量的概念及其与无穷小量的关系。

数列极限与函数极限的定义及其性质 函数的左极限和右极限
无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较
极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:

考试内容:原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 用定积分表达和计算质心 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义反常(广义)积分 定积分的应用
考试要求
1.理解原函数概念,理解不定积分和定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
3.会求有理函数、三角函数有理式及简单无理函数的积分.
4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
5.了解广义反常积分的概念,会计算广义反常积分.
6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心等)及函数的平均值等.

8。理解函数连续性的概念,会判别函数间断点的类型。

函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质

考试内容:原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 用定积分表达和计算质心 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义反常(广义)积分 定积分的应用
考试要求
1.理解原函数概念,理解不定积分和定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
3.会求有理函数、三角函数有理式及简单无理函数的积分.
4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
5.了解广义反常积分的概念,会计算广义反常积分.
6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值等.

9。了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质,并会应用这些性质。

考试要求

对比:对定积分应用中多一个“形心”表述与计算的要求
分析:1、重心:物体的重力的合力作用点称为物体的重心。(与组成该物体的物质有关)2、形心:物体的几何中心。(只与物体的几何形状和尺寸有关,与组成该物体的物质无关)3、一般情况下重心和形心是不重合的,只有物体是由同一种均质材料构成时,重心和形心才重合。4、当截面具有两个对称轴时,二者的交点就是该截面的形心。据此,可以很方便的确定圆形、圆环形、正方形的形心;
5、只有一个对称轴的截面,其形心一定在其对称轴上,具体在对称轴上的哪一点,则需计算才能确定。6、对于一些常见的简单图形,如圆形、矩形、三角形、正方形等,其形心都是熟知的,利用这些简单图形的形心,由叠加法即可确定由这些简单图形组成的组合图形的
形心。
建议:注意形心与质心的区别,理解几何量与物理量的积分表达式

导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系
平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数
复合函数、反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性
微分中值定理 洛必达法则 函数单调性的判别 函数的极值
函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值

1。理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

第四章:向量代数和空间解析几何

1。理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义,会求平面曲线的切线方程和法线方程。

2。了解函数的有界性、单调性、周期性和奇偶性。

考试内容:
  向量的概念 向量的线性运算 向量的数量积和向量积 向量的混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件 点到平面和点到直线的距离 球面 母线平行于坐标轴的柱面 旋转轴为坐标轴的旋转曲面的方程 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程
考试要求:
1.理解空间直角坐标系,理解向量的概念及其表示.
2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.
3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.
4.掌握平面方程和直线方程及其求法.
5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.
6.会求点到直线以及点到平面的距离.
7.了解曲面方程和空间曲线方程的概念.
8.了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程.
9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.

2。掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数。

3。理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

考试内容:
  向量的概念 向量的线性运算 向量的数量积和向量积 向量的混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件 点到平面和点到直线的距离 球面 柱面 旋转曲面 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程
考试要求:
1.理解空间直角坐标系,理解向量的概念及其表示.
2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.
3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.
4.掌握平面方程和直线方程及其求法.
5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.
6.会求点到直线以及点到平面的距离.
7.了解曲面方程和空间曲线方程的概念.
8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面方程.
9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.

3。了解高阶导数的概念,会求简单函数的高阶导数。

4。掌握基本初等函数的性质及其图形,了解初等函数的概念。

对比:考试内容:07年的“母线平行于坐标轴的柱面 旋转轴为坐标轴的旋转曲面的方程”变成“柱面 旋转曲面
考试要求:第8条中由07年的“会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程.”变成“会求简单的柱面和旋转曲面方程.”
分析:

4。了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。

5。了解数列极限和函数极限(包括左极限与右极限)的概念。

建议:

5。理解罗尔定理、拉格朗日中值定理,了解泰勒中值定理,掌握这四个定理的简单应用。

6。了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。

第五章:多元函数微分学

6。会用洛必达法则求极限。

7。理解无穷小量的概念和基本性质,掌握无穷小量的比较方法。了解无穷大量的概念及其与无穷小量的关系。

考试内容:
多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念
有界闭区域上多元连续函数的性质 多元函数的偏导数和全微分 全微分存在的必要条件和充分条件
多元复合函数、隐函数的求导法
二阶偏导数 方向导数和梯度 空间曲线的切线和法平面 曲面的切平面和法线 二元函数的二阶泰勒公式 多元函数的极值和条件极值 多元函数的最大值、最小值及其简单应用
考试要求:
1.理解多元函数的概念,理解二元函数的几何意义.
2.了解二元函数的极限与连续性的概念以及有界闭区域上连续函数的性质.
3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.
4.理解方向导数与梯度的概念,并掌握其计算方法.
5.掌握多元复合函数一阶、二阶偏导数的求法.
6.了解隐函数存在定理,会求多元隐函数的偏导数.
7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.
8.了解二元函数的二阶泰勒公式.
9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.

7。掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用。

8。理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

考试内容:
多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念
有界闭区域上多元连续函数的性质 多元函数的偏导数和全微分 全微分存在的必要条件和充分条件
多元复合函数、隐函数的求导法
二阶偏导数 方向导数和梯度 空间曲线的切线和法平面 曲面的切平面和法线 二元函数的二阶泰勒公式 多元函数的极值和条件极值 多元函数的最大值、最小值及其简单应用
考试要求:
1.理解多元函数的概念,理解二元函数的几何意义.
2.了解二元函数的极限与连续性的概念以及有界闭区域上连续函数的性质.
3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.
4.理解方向导数与梯度的概念,并掌握其计算方法.
5.掌握多元复合函数一阶、二阶偏导数的求法.
6.了解隐函数存在定理,会求多元隐函数的偏导数.
7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.
8.了解二元函数的二阶泰勒公式.
9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.

8。会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。当
时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点和渐近线。

9。了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

对比:无变化

9。会描述简单函数的图形。

二、一元函数微分学

第六章:多元函数积分学

原函数和不定积分的概念 不定积分的基本性质 基本积分公式
定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数
牛顿-莱布尼茨公式 不定积分和定积分的换元积分法与分部积分法 反常积分
定积分的应用

考试内容

考试内容:
  二重积分与三重积分的概念、性质、计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分的关系 格林(Green)公式 平面曲线积分与路径无关的条件 二元函数全微分的原函数 两类曲面积分的概念、性质及计算
两类曲面积分的关系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及计算
曲线积分和曲面积分的应用
考试要求:
1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.
2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).
3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.
4.掌握计算两类曲线积分的方法.
5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求二元函数全微分的原函数.
6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.
7.了解散度与旋度的概念,并会计算.
8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等).

1。理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法。

导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系
平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数
复合函数、反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性
微分中值定理 洛必达(L‘Hospital)法则 函数单调性的判别 函数的极值
函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值

考试内容:
  二重积分与三重积分的概念、性质、计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分的关系 格林(Green)公式 平面曲线积分与路径无关的条件 二元函数全微分的原函数 两类曲面积分的概念、性质及计算
两类曲面积分的关系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及计算
曲线积分和曲面积分的应用
考试要求:
1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.
2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).
3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.
4.掌握计算两类曲线积分的方法.
5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求二元函数全微分的原函数.
6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.
7.了解散度与旋度的概念,并会计算.
8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等).

2。了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法。

考试要求

对比:无变化

3。会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题。

1。理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。

第七章:无穷级数

4。了解反常积分的概念,会计算反常积分。

2。掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数。

考试内容
常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质
简单幂级数的和函数的求法 初等函数的幂级数展开式
函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dirichlet)定理 函数在上的傅里叶级数 函数在[0,l]上的正弦级数和余弦级数
考试要求:
1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.
2.掌握几何级数与p级数的收敛与发散的条件.
3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.
4.掌握交错级数的莱布尼茨判别法.

多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念
有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算
多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分
多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算
无界区域上简单的反常二重积分

3。了解高阶导数的概念,会求简单函数的高阶导数。

  1. 了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与收敛的关系.
    6.了解函数项级数的收敛域及和函数的概念.
    7.理解幂级数的收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.
    8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.
    9.了解函数展开为泰勒级数的充分必要条件.
    10.掌握、、、和的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数.
    11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式.

1。了解多元函数的概念,了解二元函数的几何意义。

4。了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。

考试内容
常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质
简单幂级数的和函数的求法 初等函数的幂级数展开式
函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dirichlet)定理 函数在[-l,l]上的傅里叶级数 函数在[0,l]上的正弦级数和余弦级数
考试要求
1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.
2.掌握几何级数与p级数的收敛与发散的条件.
3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.
4.掌握交错级数的莱布尼茨判别法.

2。了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。

5。理解罗尔(Rolle)定理、拉格朗日(
Lagrange)中值定理,了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用。

  1. 了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与收敛的关系.
    6.了解函数项级数的收敛域及和函数的概念.
    7.理解幂级数的收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.
    8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.
    9.了解函数展开为泰勒级数的充分必要条件.
    10.掌握、、、和的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数.
    11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式.

3。了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数。

6。会用洛必达法则求极限。

对比:无变动

4。了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题。

7。掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用。

第八章:常微分方程

5。了解二重积分的概念与基本性质,掌握二重积分的计算方法,了解无界区域上较简单的反常二重积分并会计算。

8。会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。当
时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点和渐近线。

考试内容
常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程
欧拉(Euler)方程 微分方程简单应用
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.(调整前知识点:了解微分方程及其解、阶、通解、初始条件和特解等概念.)
2.掌握变量可分离的微分方程及一阶线性微分方程的解法.
3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程
4.会用降阶法解下列方程:,和.
5.理解线性微分方程解的性质及解的结构.
6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
7.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程.
8.会解欧拉方程.
9.会用微分方程解决一些简单的应用问题.

常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与
级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式

9。会描述简单函数的图形。

考试内容
常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程
欧拉(Euler)方程 微分方程简单应用
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.(调整前知识点:了解微分方程及其解、阶、通解、初始条件和特解等概念.)
2.掌握变量可分离的微分方程及一阶线性微分方程的解法.
3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程
4.会用降阶法解下列方程:,和.
5.理解线性微分方程解的性质及解的结构.
6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
7.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程.
二零一四年考研数学三试验大纲原来的作品<【澳门新葡8455最新网站】。8.会解欧拉方程.
9.会用微分方程解决一些简单的应用问题.

1。了解级数的收敛与发散、收敛级数的和的概念。

三、一元函数积分学

对比:无变动

2。了解级数的基本性质及级数收敛的必要条件,掌握几何级数及
级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法。

考试内容

线性代数

3。了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法。

原函数和不定积分的概念 不定积分的基本性质 基本积分公式
定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数
牛顿-莱布尼茨(Newton- Leibniz)公式
不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用

第一章:行列式

4。会求幂级数的收敛半径、收敛区间及收敛域。

考试要求

考试内容:
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求:
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

5。了解幂级数在其收敛区间内的基本性质,会求简单幂级数在其收敛区间内的和函数。

1。理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法。

考试内容:
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求:
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

6。了解 , , , 及 的麦克劳林展开式。

2。了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法。

对比:没变化

六、常微分方程与差分方程

3。会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题。

第二章:矩阵

常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理
二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用

4。了解反常积分的概念,会计算反常积分。

考试内容:
矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵  矩阵的秩 矩阵等价 分块矩阵及其运算
考试要求:
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
  3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
  4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.
5.了解分块矩阵及其运算.

1。了解微分方程及其阶、解、通解、初始条件和特解等概念。

四、多元函数微积分学

考试内容:
矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵  矩阵的秩 矩阵等价 分块矩阵及其运算
考试要求:
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
  3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
  4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.
5.了解分块矩阵及其运算.

2。掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法。

考试内容

对比:无变化

3。会解二阶常系数齐次线性微分方程。

多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念
有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算
多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分
多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算
无界区域上简单的反常二重积分

第三章:向量

4。了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程。

考试要求

考试内容:
  向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关
向量组的极大线性无关组 等价向量组 向量组的秩
向量组的秩与矩阵的秩之间的关系 向量空间以及相关概念
n维向量空间的基变换和坐标变换 过渡矩阵 向量的内积
线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质
考试要求:
  1.理解n维向量、向量的线性组合与线性表示的概念.
  2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
  3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系
  5.了解n维向星空间、子空间、基底、维数、坐标等概念.
  6.了解基变换和坐标变换公式,会求过渡矩阵.
  7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
8.了解规范正交基、正交矩阵的概念以及它们的性质.

5。了解差分与差分方程及其通解与特解等概念。

1。了解多元函数的概念,了解二元函数的几何意义。

考试内容:
  向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关
向量组的极大线性无关组 等价向量组 向量组的秩
向量组的秩与矩阵的秩之间的关系 向量空间以及相关概念
n维向量空间的基变换和坐标变换 过渡矩阵 向量的内积
线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质
考试要求:
  1.理解n维向量、向量的线性组合与线性表示的概念.
  2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
  3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系
  5.了解n维向星空间、子空间、基底、维数、坐标等概念.
  6.了解基变换和坐标变换公式,会求过渡矩阵.
  7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
8.了解规范正交基、正交矩阵的概念以及它们的性质.

6。了解一阶常系数线性差分方程的求解方法。

2。了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。

对比:无变化

7。会用微分方程求解简单的经济应用问题。

3。了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数。

第四章:线性方程组

行列式的概念和基本性质行列式按行展开定理

4。了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题。

考试内容:
线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件
非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构
齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解
考试要求
l.会用克莱姆法则.
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组解的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.

1。了解行列式的概念,掌握行列式的性质。

5。了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算。

考试内容:
线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件
非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构
齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解
考试要求
l.会用克莱姆法则.
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组解的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.

2。会应用行列式的性质和行列式按行展开定理计算行列式。

五、无穷级数

对比:变无化

矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价
分块矩阵及其运算

考试内容

第五章:矩阵的特征值及特征向量

相关文章

This entry was posted in 主页 and tagged , , , , , . Bookmark the permalink.

发表评论

电子邮件地址不会被公开。 必填项已用*标注